2011 International Conference on Document Analysis and Recognition

Translation-Inspired OCR

Dmitriy Genzel, Ashok C. Popat, Nemanja Spasojevic, Michael Jahr, Andrew Senior, Eugene Ie, Frank Yung-Fong Tang
Google, Inc.
Mountain View, CA, USA
Email: {dmitriy,popat,sofra,mjahr,andrewsenior,eugeneie,ftang } @ google.com

Abstract—Optical character recognition is carried out using
techniques borrowed from statistical machine translation. In
particular, the use of multiple simple feature functions in
linear combination, along with minimum-error-rate training,
integrated decoding, and N-gram language modeling is found
to be remarkably effective, across several scripts and languages.
Results are presented using both synthetic and real data in five
languages.
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I. INTRODUCTION

Optical Character Recognition (OCR) is an old field;
approaches have evolved over time as needs and tech-
nologies have changed [1], [2]. This evolution continues
to this present day — advances in related fields such as
Speech Recognition influenced approaches developed in the
90s [3], [4]; advances in Machine Learning are often tested
on various “toy versions” of the OCR problem, such as
isolated glyph recognition, to evaluate and compare learning
algorithms.

Here, we consider an approach to OCR that exploits
recent advances in the related field of Statistical Machine
Translation (SMT). We wish to assess the potential of our
approach in a fairly realistic setting, so we work on entire
text lines and consider a variety of languages, including ones
having connected scripts and large character sets. We do not
consider layout analysis however, and rely instead on the
text lines having been previously extracted from the page
images.

In SMT systems the decoder covers the source sentence
(the line image in our case) with phrases which have
corresponding translations (in our case characters, or more
precisely grapheme clusters). By considering sequentially
computed image features as source words and characters
as target words, OCR becomes a special case of machine
translation. Of course, if treated naively, this approach would
lead to poor quality because of inherent variability in the
underlying data and processes, making it unlikely that image
segments will match previous observations pixel-for-pixel.
We are able to address this issue within a typical SMT
framework, implementing an OCR system using an existing
SMT system as a back-end with only minor changes.
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II. SYSTEM DESCRIPTION

Let I be a line image of width w. We treat I as a sequence
of single-pixel columns I = (I;)¥. Let S = (S;)" be a
horizontal partition of this image, where each cell S; is a
group of consecutive pixel columns. Each S; is intended to
be an area of an image where a single character is printed.
Due to overlap of character bounding boxes, this ideal of
horizontal partitioning into single-character cells can only
be approximated. We refer to the character in S; as t;. The
output of the system is the rranscription T = (t;)}. Let the
set of possible ¢; be denoted as 7.

We use a maximum-entropy inspired linear model, similar
to that of Och and Ney [5].

T = arg max P(T|I)
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where h;(T,I) are feature functions (typically log-
probabilities of various kinds) and \; are fixed weights. One
critical kind of feature function is a language model:

n
him(T, 1) =log P(T) =log [ [ P(tilto ... ti 1)
i=1
This feature is by definition context dependent: it cannot
be evaluated for ¢; independently of the preceding hypothe-
sized transcription elements. Many other features can be so
decomposed, if the segmentation is provided. Therefore, in
practice, instead of maximizing over all transcriptions T" we
maximize over pairs of (T, S):
m

T = (T, S, T
argnTl?SXZ;Alhz( .S, 1)
And for decomposable (local) features, we have:

hi(T, 8, T) = > hj.(t:, S;)
=1

An example of a local feature is what is known in SMT as
CEF:
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Figure 1. Example line image to explain notation. Here, the transcription
= (t;)17 is sat in the corner.
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Figure 2. Simple row and column projections of the binarized segment

form source-side pseudo-words.

where Counts are computed over a training corpus, and
therefore
n
= Z log
i=1
In SMT the CEF feature is very useful, but for OCR it
is not, due to tremendous sparsity of the input domain. A
single pixel having a different value would cause the count
to become zero. We need feature functions that are more
robust to input noise.

A simple way to deal with this problem is to project
onto multiple smaller spaces. Let wg and hg be the re-
spective maxima of the widths and heights over all S; in
all training line images.! We define a set of s = wg + hg
projections {p1, . .., ps}, each mapping S; to a binary string.
Specifically, each p;(S;),k =1,...,hg is a row projection
obtained by reading off the binarized pixels in the k™ row of
S; as a string of zeros and ones, padding with trailing zeros
(white background) as necessary. The column projections
pr(Si),k = hg + 1,...,s are defined analogously. See
Figure 2.

Count(t;, S;)

heer (T, 5, 1) Count(S;)

! As a practical matter, very large cells deemed to be outliers are excluded
from the computation of wg and hg.
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Having defined these projections, we can compute the
following features based on each:

Zl(

Count(t;, pi(S;))

h (T, S, 1)
k(T 9 Count(px(S;))

and

Count(t;, pr(Si))

h (T,S,I)
k.cr( Count(t;)

Zl

These local features, the language model feature, and the
length feature (Riengn (S, 7', I) = |T'| = n) are all the features
we need.

A. Training

The training data consists of text line images along with
annotations indicating the line transcriptions and bounding
boxes for each character. We assume that extraneous white
space on the left and right of the line image has been
removed. The provided bounding boxes are not necessarily
a partition of the image: they may intersect, leave empty
space between them, and they do not cover the entire pixel
columns vertically. Our first task is to transform them to a
partition. To do this we employ a heuristic. First, we extend
all bounding boxes vertically to cover the entire image.
Where the boxes intersect, we let the smaller of the boxes
keep the area, and adjust the other box. Where there is empty
space, we also expand the smaller of its neighbors to cover
it. We also reduce image resolution to 100dpi to make the
decoder search faster.

We iterate over each bounding box, padding the image
contained in the box with white background to the fixed
width wg and height hg as described above, and extracting
all column and row projections from this image. We then
compute co-occurrence counts of the form C(k, py(S;), ;)
over the entire training corpus. We then output a mapping
where the key is k,pg(S;) pair, and the value is a set of

triples:
C(k, pi(Si), t;) C(k, pr(Si), t:)
ti,lo ,lo
{ ®TChp(S) TP O

i.e. a set of possible characters it can correspond to, with
a CEF and CFE score for each. We refer to this data as a
projection table which serves as a functional parallel to a
phrase table in SMT.

In addition to training the projection feature functions, we
also train a 10-gram character language model, in the same
way as similar model is trained for SMT, except that we
need to turn spaces into pseudo-words.

tiGT}

B. Decoding

We use a state of the art phrase-based statistical SMT
system (similar to that of Och et al. [6]) as a back-end. For
this, we turn an image into a collection of pseudo-words,
each word encoding an image column. For the target side, we
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Figure 3. Data-generation pipeline.

treat each character as a word, except that we use a special
token for spaces. We also modify the portion of the SMT
system that is responsible for the retrieval of phrases. Instead
of retrieving a set of target phrases for each source phrase,
as is done in SMT, we consider each source span “phrase” of
up to maximum width (as observed in training). This is then
converted to an image, all the projections are computed and
the corresponding sets of characters with their CEF and CFE
scores are retrieved. For each character, we then associate
all retrieved scores (twice the number of projections) as 2n
different feature functions associated with that “phrase”. We
also add a feature function NWORDS with a value of 1 to
each phrase. Some characters will have infinite costs for
some feature functions, if they were not observed to co-
occur with the corresponding projection. We smooth those,
by assigning a very low fixed probability (high cost) instead.
We also prune those phrases that did not co-occur with most
projections.

The normal SMT search (with reordering disallowed)
is then performed, using these local features as well as
a language model, described above. This is essentially
equivalent to a beam search in a lattice which we have
effectively constructed in the previous step. Other lattice
scoring algorithms (with language model support) could be
used as well.

To optimize the feature weights {A;}, Minimum Error
Rate Training [7] is run on a development set.

For Arabic, we have a choice of either treating it as a
left-to-right language (requires inverting the transcription for
the LM), or as right-to-left (simply flip the image, keeping
transcription constant). We did both, and the results are
substantially the same, and we report them only for left-
to-right decoding. Processing Arabic left-to-right has the
advantage of uniformity and means that in a multilingual
system we do not have to detect the direction of the text
before we start decoding.

III. DATA

As mentioned, our processing is currently oriented around
isolated text lines, as we are not attempting to address layout
analysis or page segmentation in this work. Our elementary
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Table T
SOURCE TEXT STATISTICS.

Language Font Codepoints  Characters Lines
Arabic Times New Roman 1,176,836 1,172,236 10,906
Chinese AR PL New Sung 1,472,932 1,472,932 40,000
English Times New Roman 3,306,423 3,306,423 40,000
Hindi Lohit Hindi 893,466 627,665 11,876
Russian Times New Roman 2,890,716 2,890,641 40,000

Figure 4.  Examples of ground-truth annotation of grapheme cluster
(character) locations in Arabic, English, and Hindi PRAN-data examples.

unit of annotated or ground-truth data comprises a line
image’s raster data, its UTF-8 transcription, a collection
of (possibly overlapping) bounding boxes indicating the
locations of individual characters, and an indication of which
codepoints in the transcription compose each character. The
latter is potentially useful in training, debugging, and in
evaluating the output segmentation returned by the OCR
system. An example is shown in Figure 4.

Data sets were produced by obtaining UTF-8 text in
the desired languages, then typesetting the results to pro-
duce sets of annotated ground-truth text-line data units.
We converted these into two datasets for each language:
synthetic, wherein the data is kept in digital form, corrupted
only by pseudorandom noise, and PRAN, wherein the lines
are composed on a page, printed, scanned, and aligned to
produce annotated datasets (details below). In all cases,
random splitting was used to partition the data into disjoint
training, development, and test subsets.

A. Source texts

A number of works in each of the five languages were
selected and downloaded from wikisource.org. One advan-
tage of this particular source is that its data is in the public
domain, and can therefore be distributed along with its
derivative images for use by other researchers, as we plan
to do. Another is that some of the data has been proofread
and verified by volunteers literate in the relevant languages;
all of the selected works met this standard.

The English and Russian are entirely from Dickens and
Tolstoy, respectively. The Hindi is modern from novels;
the Chinese and Arabic texts are classical (the former in
Traditional Han script).

B. Print-Scan Pipeline

The PRint-scAN (PRAN) data pipeline is shown in Fig-
ure 3. The source text is fed to a renderer based capable



of high-quality typesetting in a vast array of languages,
correctly producing requisite complex ligatures and conso-
nant clusters, and capable of reporting the extents of the
grapheme clusters. Fonts were chosen such that primary
glyph support was present for each character without re-
sorting to fallback. In all cases the font size was 12 point,
typeset at 300 dpi in grayscale, with pixel values ranging
from zero to 255.

To prepare the synthetic data-sets, we simply added i.i.d.
Gaussian noise (@ = 0, 0 = 20) to each line image. An
example is shown in Figure 5.

Preparation of the PRAN datasets was more involved.
We began with the same elementary text-line units used in
synthetic, but rather than add noise, we composed them into
a set of PNG letter-size page images, maintaining the 300
dpi resolution and 8-bit grayscale depth. For each page, we
recorded the exact position (bounding box) of each line as
side information. The page images were binarized to prevent
stubble associated with halftone-screens, then printed on a
Ricoh MP C5000 laser printer. The number of lines was
limited to 40,000 in each language (see Table I), 40 lines
per page. For Arabic and Hindi the available source text was
insufficient to reach that limit.

The resulting physical pages were then scanned on a
sheet-fed scanner Panasonic KV-S3105C in 8-bit grayscale,
again at 300 dpi. A post-processing step was then applied
to clean and de-skew the images and reduce the pixel-depth
down to 16 gray levels. Despite the post-processing, the
resulting scanned images contain various distortions, the
most severe of which is uneven stretching and shrinking in
the vertical dimension due to fluctuation in the rate at which
the sheets move through the rollers.

In order to recover the line bounding-box locations (and
therefore the precise character locations which are known
relative to the line boxes), it is necessary to map the
geometry of the original synthetic page image to that re-
sulting from scanning. To accomplish this, we first scale the
scanned image to be precisely the same size as the original.
Next, we identify likely word-bounding boxes using simple
image morphology operations. An initial matching is then
obtained between the word boxes in each image, taking into
account both centroid location and aspect ratio as matching
features. [8]. Boxes that match with sufficient confidence
are then used in a second-pass alignment. Specifically,
the pixel locations in the matching boxes are placed in
a correspondence (z,y) — (2/,y’), allowing least-square
estimation of the affine transformation matrix in

t11 ti2 tiz| |x x’
tor tae tos| |y| = |V
0 0 1 1 1

This transformation matrix can model scaling, translation,
rotation, and shear, making it amply suited to model the
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Figure 5. Slightly noisy synthetic data example.

Table II
RESULTS ON SYNTHETIC DATA (CER)

Language | Commercial OCR | Our system

English 0.44% 0.10%
Russian 2.46% 0.50%
Arabic N/A 0.34%
Chinese 3.69% 0.53%
Hindi N/A 0.70%

geometric page mapping in the present case of sheet-fed
scanning.

After estimating the transformation matrix, the word-
bounding boxes are discarded. The transformation is applied
to the original line bounding boxes to obtain the corre-
sponding boxes in the scanned image, and similarly for the
character boxes. The character boxes shown in Figure 4 were
recovered in this manner.

IV. EXPERIMENTS
A. Evaluation metric

We use a standard OCR evaluation metric, character error
rate (CER) which is defined as the sum of edit distances
between the proposed and the correct transcriptions over all
the test instances, divided by the total length of the correct
transcriptions.

B. Synthetic data

For our first set of experiments we use our synthetic
datasets, randomly divided into training, development and
test in proportion of 92%, 4%, 4%, for each language. We
use bounding box information for training data, but for
development and test sets we use only raw images as input.

The results are shown in Table II. We compare perfor-
mance to a state-of-the-art, well-known commercial system
as a baseline. (Our license may not allow us to state which
commercial system we are using.) This system does not have
support for Arabic and Hindi. As an additional comparison
point, we ran English-only experiments using a speech-based
system similar to that described in [4]; the resulting error rate
was 0.49%.

C. PRAN data

For the second set of experiments, we use PRAN, prepared
as described above, and subdivided into training, develop-
ment and test in the same proportion as for synthetic data.
Results are presented in Table III; the error rate for the
speech-based system for this data was 0.74% (English).

In addition, we performed an experiment where we com-
bined all the data for different languages together, and split
into training, development and test in the same proportion.
The data was not annotated with respect to language. There
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Table IIT
RESULTS ON REAL DATA (CER)

Language | Commercial OCR | Our system

English 0.81% 0.45%
Russian 1.16% 0.73%
Arabic N/A 1.97%
Chinese 4.01% 3.00%
Hindi N/A 2.20%

were no special features added. The system obtained a CER
of 2.81%.

V. DISCUSSION

The experimental results indicate that the OCR system
based on machine translation can be effective on PRAN data
across diverse scripts and languages, including connected
(Arabic) and large-character-set (Chinese). Moreover, the
system appears to adapt well to lower-resolution images
(e.g., 100 dpi), and in principle can handle mixed languages
by simply using merged phrase tables and language models
(albeit at a computational cost).

The features used in these experiments are rather crude:
they involve binarizing the image as a first step (a throw-
back to traditional pipelined approaches to OCR), and they
fundamentally give up the ability to generalize observations
by appealing to “nearness” in projection space. With the
framework in place and baselines established, it should be
straightforward to incorporate more sophisticated features,
including those known to perform well in other OCR ap-
proaches. We leave this for future work.

While the error rates appear to be competitive with the
commercial system on both PRAN and synthetic data, some
caution is required in interpreting the results. The language
models were trained on the training part of the data-split;
since the data comes from limited works it is highly in-
domain, giving our method an advantage.

Key to the success of approaches to OCR like the one
described here is the availability of suitable training data.
The PRAN pipeline we described for producing precisely
annotated data scales quite well in principle, and extends
readily to diverse scripts and languages.

While real in the sense that actual physical pages were
printed and scanned, the PRAN retains some artificial quali-
ties: homogeneity in the script, language, typeface, and point
size. An alternative approach would be to scan existing
printed material, and fill in the ground truth annotations
using a suitable manual data-entry process. The amount of
skilled human effort required per page for that approach is
substantial, and any errors made in the manual data entry
will cause the transcription to fail to match the image. While
PRAN also requires some human effort (e.g., to correct the
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source text), the impact of errors is less: the transcription
will still be faithful to the image, even if it contains errors
relative to the intended text. From this point of view the
human role in the PRAN pipeline can be seen as somewhat
optional, opening the door to using vast amounts of mined
text for training, or even pseudorandom text generated by
running Markov chains.

VI. CONCLUSION

We have presented an approach to OCR patterned after
a modern statistical machine translation system, and noted
reasonable performance on both PRAN and synthetic data
across several scripts and languages. The resulting system
can incorporate multiple and diverse feature functions, au-
tomatically weighing each appropriately for the given data
and conditions. The system is easily trained from data for
new scripts, languages, and input modalities.
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